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Secure Computation

• Sensitive data is divided among two or more different 
parties

• The aim being to run a data mining algorithm on the 
union of the parties‘ databases without allowing any 
party to view another individual's private data

• Example: Medical data
– Different hospitals wish to jointly mine their patient data 

for the purpose of medical research
– It is necessary to find a solution that enables the hospitals 

to compute the desired data mining algorithm on the 
union of their databases

• Similar examples: intelligence agencies, governments, 
etc.



Possible Solutions

• Pool all of the data in one place and run the data 
mining algorithm on the pooled data?

• Not acceptable
– Hospitals are not allowed to hand their raw data out

– Security agencies cannot afford the risk

• Secure multiparty computation
– A set of parties with private inputs wishes to jointly 

compute some function of their inputs

• Remaining problem: inference from the output of 
the algorithm using “background information”
– Out-of-scope



Distributed Computing



Secure Multiparty Computation (SMC)

• Goal: to enable parties to carry out distributed 
computing tasks in a secure manner

• Assumption: a protocol execution may come 
under “attack” by an external entity, or even by a 
subset of the participating parties
– To learn private information or cause the result of the 

computation to be incorrect

• Key requirements: privacy and correctness

• The setting of SMC can model almost every 
cryptographic problem



Examples

• Electronic voting, electronic auctions, electronic cash 
schemes, contract signing, anonymous transactions, private 
information retrieval, etc.

• In e-voting:
– privacy requirement: 

– ensure that no parties learn anything about the individual votes of 
other parties

– correctness requirement: 
– ensure that no coalition of parties has the ability to influence the 

outcome of the election

• In auctions:
– privacy requirement: 

– ensure that only the winning bid is revealed

– correctness requirement: 
– ensure that the highest bidder is indeed the winning party



Security in Multiparty Computation

• Set of requirements that should hold for any secure 
protocol:
1) Privacy

• No party should learn anything more than its prescribed output

2) Correctness
• Each party is guaranteed that the output that it receives is 

correct

3) Independence of Inputs
• Corrupted parties must choose their inputs independently of 

the honest parties’ inputs

4) Guaranteed Output Delivery
• Corrupted parties should not be able to prevent honest parties 

from receiving their output

5) Fairness
• Corrupted parties should receive their outputs if and only if the 

honest parties also receive their outputs



Ideal World vs. Real World

• Just checking a set of requirements is not enough
• Need a definition that is general enough to capture all 

applications

• Ideal World: an external trusted (and incorruptible) 
party is willing to help the parties carry out their 
computation
– Parties send their inputs to the trusted party
– Trusted party computes the desired function and passes to 

each party its prescribed output
– Only freedom given to the adversary is in choosing the 

corrupted parties’ inputs

• Real World: no external party that can be trusted by all 
parties



Generalized Security Definition

• A real protocol that is run by the parties (in a world 
where no trusted party exists) is said to be secure, if no 
adversary can do more harm in a real execution than in 
an execution that takes place in the ideal world

• The security of a protocol is established by comparing 
the outcome of a real protocol execution to the 
outcome of an ideal computation
– A real protocol execution “emulates” the ideal world

• This formulation of security is called the ideal/real 
simulation paradigm

• Implies all 5 requirements in a general way



Adversarial Power (1)

• Key assumption for security definition (and proof) of an 
algorithm

• Adversary can be categorized based on its corruption 
strategy, allowed behavior, and computational power

• Corruption strategy:
– Static corruption model

• Honest parties remain honest and corrupted parties remain 
corrupted

– Adaptive corruption model
• Adversary has the capability of corrupting parties during the 

computation

– Proactive model
• Parties are corrupted only for a certain period of time



Adversarial Power (2)

• Allowed adversarial behavior
– Semi-honest adversary

• Corrupted parties correctly follow the protocol specification
• “honest-but-curious” or “passive”

– Malicious adversary
• Corrupted parties can arbitrarily deviate from the protocol 

specification

• Complexity
– Polynomial-time

• Adversary is allowed to run in (probabilistic) polynomial-time
• Any attack that cannot be carried out in polynomial-time is not a 

threat in real life (e.g., factoring large numbers)
• Computational model for secure computation

– Computationally unbounded
• Information-theoretic model for secure computation



Feasibility of SMC
• Based on fraction of corrupted parties

• Let m denote the number of participating parties and 
let t denote a bound on the number of parties that 
may be corrupted

– For t < m/3, SMC with fairness and guaranteed output 
delivery can be achieved for any function in a point-to-
point network and without any setup assumptions

– For t < m/2, SMC with fairness and guaranteed output 
delivery can be achieved for any function assuming that 
the parties have access to a broadcast channel

– For t ≥ m/2, SMC (without fairness or guaranteed output 
delivery) can be achieved assuming that the parties have 
access to a broadcast channel and that enhanced trapdoor 
permutations

• Holds only in the computational setting



Definitions of Security 
Preliminaries

• Assumptions: 
– Static corruptions and no honest majority

– Polynomial-time adversaries

• Security parameter: n (length of the 
cryptographic key)

• A function μ(·) is negligible in n if for every 
positive polynomial p(·) there exists an integer N
such that for all n > N it holds that μ(n) < 1/p(n)
– An event that happens with negligible probability can 

be dismissed



Definitions of Security 
Computational Indistinguishability

c



Security in Semi-Honest Model
Two Party Computation

x y



Security in Semi-Honest Model
Highlevel Definition of Security

• A protocol is secure if whatever can be 
computed by a party participating in the 
protocol can be computed based on its input 
and output only

• Formalized according to the simulation 
paradigm
– A party’s view in a protocol execution should be 

simulatable given only its input and output

• The parties learn nothing from the protocol 
execution itself, as desired



Security in Semi-Honest Model
Formal Definition of Security

c

c



Security in Malicious Model



Security in Malicious Model
Ideal Execution



Security in Malicious Model
Ideal Execution

Trusted
Party

i. continue
ii. halt



Security in Malicious Model
Highlevel Definition of Security



Security in Malicious Model
Formal Definition of Security

c



Security in Malicious Model
Modular Sequential Composition

• It is possible to design a protocol that uses an ideal 
functionality as a subroutine, then analyze the security of 
the protocol when a trusted party computes this 
functionality

– First, construct a protocol for the functionality in question and 
prove its security

– Next, prove the security of the larger protocol that uses the 
functionality as a subroutine in a model where the parties have 
access to a trusted party computing the functionality

• The composition theorem then states that when the “ideal 
calls” to the trusted party for the functionality are replaced 
by real executions of a secure protocol computing this 
functionality, the protocol remains secure



Example – Wired Equivalent 
Privacy (WEP)

AP

Internet

STA



WEP – Message Confidentiality and 
Integrity

• WEP encryption is based on RC4 (a stream cipher developed 
in 1987 by Ron Rivest for RSA Data Security, Inc.)
– operation:

• for each message to be sent:

– RC4 is initialized with the shared secret (between STA and AP)

– RC4 produces a pseudo-random byte sequence (key stream)

– this pseudo-random byte sequence is XORed to the message

• reception is analogous

• WEP integrity protection is based on an encrypted CRC value
– operation:

• ICV (integrity check value) is computed and appended to the message

• the message and the ICV are encrypted together



WEP – Message Confidentiality and 
Integrity

IV secret key RC4

message + ICV

message + ICVIV

IV secret key RC4

message + ICV

encode

decode

K

K

K: pseudo-random sequence

Parties:
- Message sender (honest)
- Wireless medium (malicious)



WEP Flaw – Integrity

• The attacker can manipulate messages despite the ICV 
mechanism and encryption
– CRC is a linear function wrt to XOR: 

CRC(X Y) = CRC(X) CRC(Y)

- attacker observes (M | CRC(M)) K where K is the RC4 output

- for any  M, the attacker can compute CRC( M)

- hence, the attacker can compute:



WEP - Conclusion

• A malicious adversary can temper the message content
• And hence, the output of the honest party

• “Correctness” property doe not hold anymore

• One can combine otherwise strong building blocks in a wrong 
way and obtain an insecure system at the end

• Example 
– encrypting a message digest to obtain an ICV is a good principle

– but it doesn’t work if the message digest function is linear wrt to 
the encryption function



Discussion
Semi-Honest vs. Malicious Model

• Semi-honest: each party has to trust all other 
parties for not actively cheating
– Hospitals who wish to carry out joint research on their 

confidential patient records. 
– This assumption is often too strong

• Malicious: leads to very heavy solutions
– Performance issues

• Two possible avenues:
– Reduce the level of guarantees (e.g., guaranteeing 

privacy only)
– Intermediate adversary (e.g., covert adversary)



Security in the Presence of Covert 
Adversaries

• Covert adversary: willing to actively cheat, but 
only if they are not caught
– It lies between the semi-honest and the malicious 

adversary

• Definition of security is based on the classical 
ideal/real simulation paradigm

• Additional ingredient: deterrence factor ε

• For a value 0 <ε ≤ 1, the definition guarantees 
that any attempt to “cheat” by an adversary is 
detected by the honest parties with probability at 
least ε



Guaranteeing Privacy Only
• Definition of security that follows the ideal/real 

simulation paradigm provides strong security 
guarantees
– Guarantees privacy, correctness, independence of inputs, 

and so on.

• In some settings, it may be sufficient to guarantee 
privacy only

• Toy example: two-message oblivious transfer

Oblivious
Transfer

Sender (S)

σ

xσ

x0

x1

Receiver (R)



Two-Message Oblivious Transfer



Two-Message Oblivious Transfer
Guaranteeing Privacy

c

c

c



SMC - Basic Building Blocks
Oblivious Transfer 

Oblivious
Transfer

Sender (S)

σ

xσ

x0

x1

Receiver (R)



Oblivious Transfer - Example



Oblivious Transfer - Example



Oblivious Transfer - Discussion

• There are simple and efficient protocols for 
oblivious transfer which are secure only 
against semi-honest adversaries

• It is more challenging to construct oblivious 
transfer protocols which are secure against 
malicious adversaries

– Can be achieved using zero-knowledge proofs that 
are used by the receiver



Reminder

• Secure multi-party computation

• Adversary models

– Honest-but-curious adversary

– Malicious adversary

• Security analysis of protocols

• Oblivious transfer



SMC - Basic Building Blocks
Homomorphic Encryption

• Allows specific types of computations to be carried out on ciphertext

Unpadded RSA, ElGamalBenaloh, Paillier



Homomorphic Encryption

Problem: Ciphertext expansion and computational overhead



SMC - Basic Building Blocks
Oblivious Polynomial Evaluation (OPE)



SMC - Basic Building Blocks
Oblivious Polynomial Evaluation (OPE)

Oblivious
Polynomial
Evaluation

(OPE)

Sender (S)

z

Receiver (R)

Q



Oblivious Polynomial Evaluation 
Implementation

• Based on homomorphic encryption
• Secure in the semi-honest model and achieves privacy (but 

not simulatable security) in the face of a malicious adversary
• Why not?

Sender (S) Receiver (R)

Define a homomorphic encryption
system for which only R knows the

decryption key



SMC – Generic Constructions
Yao’s Garbled Circuit

• Implement secure computation for any 
probabilistic polynomial-time function

• Secure computation in the two-party case can 
be efficiently implemented by Yao’s garbled 
circuit

• Proved to be secure against both semi-honest 
and malicious adversaries

• Next 10 slides from the lecture notes of Vitaly 
Shmatikov (UT Austin)



1

000

Yao’s Protocol

• Compute any function securely 

– … in the semi-honest model

• First, convert the function into a boolean circuit

AND

x y

z

Truth table:

x y z

0 1 0
1 0 0

1 1 1

000

OR

x y

z

Truth table:

x y z

0 1 1
1 0 1

1 1

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs



1: Pick Random Keys For Each Wire

• Next, evaluate one gate securely

– Later, generalize to the entire circuit 

• Alice picks two random keys for each wire

– One key corresponds to “0”, the other to “1”

– 6 keys in total for a gate with 2 input wires

AND

x y

zk0z, k1z

Alice Bob

k0x, k1x

k0y, k1y



2: Encrypt Truth Table

• Alice encrypts each row of the truth table by 
encrypting the output-wire key with the 
corresponding pair of input-wire keys 

AND

x y

z

k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

1

000

Original truth table:

x y z

0 1 0
1 0 0

1 1

Encrypted truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))



3: Send Garbled Truth Table

• Alice randomly permutes (“garbles”) encrypted 
truth table and sends it to Bob 

AND

x y

z

k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

Garbled truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z)) Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Does not know which row of 
garbled table corresponds to 
which row of original table



4: Send Keys For Alice’s Inputs 

• Alice sends the key corresponding to her input bit

– Keys are random, so Bob does not learn what this bit is

AND

x y

zk0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

If Alice’s bit is 1, she
simply sends k1x to Bob;
if 0, she sends k0x

Learns kb’x where b’ 
is Alice’s input bit, 
but not b’ (why?)

Garbled truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))
Ek1x

(Ek0y
(k0z))

Ek1x
(Ek1y

(k1z))



5: Use OT on Keys for Bob’s Input 

• Alice and Bob run oblivious transfer protocol

– Alice’s input is the two keys corresponding to Bob’s wire

– Bob’s input into OT is simply his 1-bit input on that wire

AND

x y

z

k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

Run oblivious transfer
Alice’s input: k0y, k1y

Bob’s input: his bit b
Bob learns kby

What does Alice learn?

Knows kb’x where b’ is Alice’s 
input bit and kby where b is 

his own input bit

Garbled truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))
Ek1x

(Ek0y
(k0z))

Ek1x
(Ek1y

(k1z))



6: Evaluate Garbled Gate 

• Using the two keys that he learned, Bob 
decrypts exactly one of the output-wire keys

– Bob does not learn if this key corresponds to 0 or 1

• Why is this important?

AND

x y

z

k0z, k1z

Alice Bob

k0x, k1x

k0y, k1y

Knows kb’x where b’ is Alice’s 
input bit and kby where b is 

his own input bit

Garbled truth table:

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))
Ek1x

(Ek0y
(k0z))

Ek1x
(Ek1y

(k1z))

Suppose b’=0, b=1

This is the only row 
Bob can decrypt.
He learns K0z



• In this way, Bob evaluates entire garbled circuit
– For each wire in the circuit, Bob learns only one key

– It corresponds to 0 or 1 (Bob does not know which)
• Therefore, Bob does not learn intermediate values (why?)

• Bob tells Alice the key for the final output wire and 
she tells him if it corresponds to 0 or 1
– Bob does not tell her intermediate wire keys (why?)

7: Evaluate Entire Circuit

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs



Brief Discussion of Yao’s Protocol

• Function must be converted into a circuit
– For many functions, circuit will be huge
– AES has around 30,000 gates

• If m gates in the circuit and n inputs, then need 4m 
encryptions and n oblivious transfers
– Oblivious transfers for all inputs can be done in parallel

• Yao’s construction gives a constant-round protocol 
for secure computation of any function in the semi-
honest model
– Two-round oblivious transfer protocol
– Number of rounds does not depend on the number of 

inputs or the size of the circuit!



Garbled Circuits – Malicious Model 

• Very difficult problem
• Several efficient protocols developed since 2004 

(it should be possible to run AES under 1 second)
• Approach considered here: Yao’s garbled circuit
• Problem: because the adversary is malicious, it 

could (if it is Party 1) deliver a deliberately false 
circuit

• Examples:
– Replace some AND gates by XOR gates, or vice-versa
– Organize the circuit in such a way that it leaks the 

input of Party 2



Possible Solution:
Cut-and-Choose Protocol (1/2)

• Principle:  
– P1 constructs a high number of circuits and provides them all to 

P2
– Then P2 chooses (say) half of them and asks P1 to “open” them 

(by providing all the keys)
– If P1 had included one or several bogus circuits, P2 will detect it 

with high likelihood

• Problems with this solution
– How to make sure that parties make use of the same inputs on 

all of them?
– The circuits may be correct, but the garbled keys may be bogus
– A sophisticated malicious P1 could construct a circuit with 2 sets 

of keys: 
• 1 opening to the correct circuit
• 1 to a different circuit



Possible Solution: 
Cut-and Choose Protocol (2/2)



Yao’s Protocol – Multiparty Case

• There are also constructions which enable a set 
of m > 2 parties to compute any function of their 
inputs without revealing any other information

• Have some drawbacks compared to the two-
party protocol:
– Require public-key operations for every gate of the 

circuit
– Number of rounds is linear in the size of the circuit
– Require communication between every pair of the m 

participating parties
– Require the use of a broadcast channel



Other Crypto Tools for Privacy 
Protection

• Anonymous 
communication

– TOR

• Anonymous credentials

• Blind signatures

• Searchable encryption

• Deterministic 
encryption

– Order-preserving 
encryption

• Computing on encrypted 
data

– Functional encryption

• Oblivious RAM

• Private information 
retrieval

• Zero-knowledge proofs

• Secret-sharing

• Etc.



In Class Exercise

• Goal: Design a system in which

– Individuals have sensitive personal data – set of 
attributes (medical records)

– Data is somehow encrypted by the individual and 
stored at the cloud

– A third-party wants to do computation on the 
data (medical center)

– The third party also has secret inputs and does 
not want to share those with the cloud

– Ideally, user is not involved



Paillier Cryosystem

• The public key: (n, g, h = g^x)

• Secret key: x ∈ [1, n^2/2]

• Strong secret:

Factorization of n = zy  
(z , y  are safe primes)



Paillier Cryptosystem
Encryption

• To encrypt a message m ∈ Z_n

– Select a random r ∈ [1, n/4] 

–Generate the ciphertext pair (C1,C2) such 
that

–C1 =  g^r mod n^2 

–C2 = h^r(1 + mn) mod n^2

– [m]=(C1,C2)
The public key: (n, g, h = g^x)
Secret key: x ∈ [1, n^2/2]



Paillier Cryptosystem
Decryption

• The message m can be recovered 
from [m]=(C1,C2) as follows:

–m = Delta(C2 /C1^x )

–Delta(u) = [(u−1) mod n^2]/n  

• For all u ∈ {u < n^2 | u  = 1 mod n}

The public key: (n, g, h = g^x)
Secret key: x ∈ [1, n^2/2]



Paillier Cryptosystem
Threshold Encryption

• Assume we randomly split the secret key in two 
shares x1  and x2 , 

– x = x1 + x2 

• The Paillier cryptosystem enables an encrypted 
message (C1,C2)  to be partially decrypted to a 
ciphertext pair (C˜1,C˜2)  using x1  as

– C˜1 =  C1 

– C˜2 =  C2 /C1^(x1) mod n^2 

• Then, (C˜1,C˜2)  can be decrypted using x2

The public key: (n, g, h = g^x)
Secret key: x ∈ [1, n^2/2]



Homomorphism

• The product of two ciphertexts is equal to the 
encryption of the sum of their corresponding 
plaintexts

• A ciphertext raised to a constant number is 
equal to the encryption of the product of the 
corresponding plaintext and the constant



Tasks

• Decide on the system model and parties involved

• Decide on the threat model for all parties involved

• Design the system

– Initialization: Key generation, key management, encryption

– Application: SMC

• Comment on the functions that can be supported

• Comment on the security/privacy of the system

• Comment on the performance

• Comment on the user-friendliness



System Model



Threat Model

• Semi-honest adversary vs. 
Malicious adversary

• Polynomial-time adversary 
vs. computationally 
unbounded adversary

• Collusion



Requirements

• Types of supported queries:

– Weighted Average

– Multiplication of ciphertexts

– Division 

– Comparison/Classification

• Access Control

• Access Patterns



Design

• Initialization

• Application(s)


